If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+52x-160=0
a = 4; b = 52; c = -160;
Δ = b2-4ac
Δ = 522-4·4·(-160)
Δ = 5264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5264}=\sqrt{16*329}=\sqrt{16}*\sqrt{329}=4\sqrt{329}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(52)-4\sqrt{329}}{2*4}=\frac{-52-4\sqrt{329}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(52)+4\sqrt{329}}{2*4}=\frac{-52+4\sqrt{329}}{8} $
| -6/7x+73=-65 | | 1/2p+2=1/8(p-1) | | 2=6/x+4+6/x-4 | | 12x+23=60x-1 | | 3x-1+3x+9+106=180 | | |2b+2|=3b-4 | | 5(x-7)+4x=28 | | -8(8-4k)=-224 | | 10y=54+y | | 13=8u+7(u+4) | | 1/7k-6=3/7k=4 | | 5t-1=48 | | -2/9x+26=-18 | | -5(3x+2)=-85 | | 17-3y/5-4y+2/3=5-6y+7y+14/3 | | 13j+19=14j | | 3/11=n/6 | | -4(m+7)=-8(m+8) | | 6x^2+5x^2+9x^2=180 | | 15+3a=a-1+4a | | 3+5x =18 | | (3x-4)x(2x+1)=0 | | 1+4k=1+3K+K | | (3x-4)*(2x+1)=0 | | X-2/2-x/6=2 | | 41+28r=181 | | 80-2x=92-3x | | 17-3y/5-4y+2/3=5 | | 16x^2-32x+10=0 | | 5/6y+1=1/3y-2 | | 1/2(6x+3)-8x-(3x-9)=13/12 | | 11-z=-7 |